If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-16y+65=100
We move all terms to the left:
y^2-16y+65-(100)=0
We add all the numbers together, and all the variables
y^2-16y-35=0
a = 1; b = -16; c = -35;
Δ = b2-4ac
Δ = -162-4·1·(-35)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-6\sqrt{11}}{2*1}=\frac{16-6\sqrt{11}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+6\sqrt{11}}{2*1}=\frac{16+6\sqrt{11}}{2} $
| 7t+15–2t=25 | | -9(5d+4)=21+3d | | 6k+1=10-9k | | w+7/4=3 | | 2^x+1+2^x+2^x-1=28 | | y^2-16y-65=100 | | x^2=(x+3)(x-3)+9 | | 5y^2-8y=-6y-7 | | 21x-6-12x+3=24x-7-15x+17 | | 3x+7/4+x+13/5=11 | | x^=(x-3)(x+3)+9 | | 7x+13-9x=18-19x+17x-5 | | -4c+18-9c=18-7c | | X^2n-16=0 | | 2=k(5)/5 | | 21.45=703*x/4096 | | 7x-11+2x=3+9x-13 | | 18a-4=3a+15 | | 3/4r=6 | | 3(2x+1)+(x+5)(2x+1)=0 | | -9(8h+7)=-30 | | 6/9-4/9x+1=25/9 | | 256=n8 | | 11x-4(1x-4)=7x+4 | | 6/9-4/9x+1=27/9 | | 1=4n | | 1.4x-3.9x=0.6x-1.82 | | -8m=3-6m | | -3x/8=48 | | 3n=n–2 | | (5.6*10^-18)/8.9*10^8=1/x | | 4y-28=-19+y |